Considerations in the use of ML interaction potentials for free energy calculations

CoRR(2024)

引用 0|浏览3
暂无评分
摘要
Machine learning potentials (MLPs) offer the potential to accurately model the energy and free energy landscapes of molecules with the precision of quantum mechanics and an efficiency similar to classical simulations. This research focuses on using equivariant graph neural networks MLPs due to their proven effectiveness in modeling equilibrium molecular trajectories. A key issue addressed is the capability of MLPs to accurately predict free energies and transition states by considering both the energy and the diversity of molecular configurations. We examined how the distribution of collective variables (CVs) in the training data affects MLP accuracy in determining the free energy surface (FES) of systems, using Metadynamics simulations for butane and alanine dipeptide (ADP). The study involved training forty-three MLPs, half based on classical molecular dynamics data and the rest on ab initio computed energies. The MLPs were trained using different distributions that aim to replicate hypothetical scenarios of sampled CVs obtained if the underlying FES of the system was unknown. Findings for butane revealed that training data coverage of key FES regions ensures model accuracy regardless of CV distribution. However, missing significant FES regions led to correct potential energy predictions but failed free energy reconstruction. For ADP, models trained on classical dynamics data were notably less accurate, while ab initio-based MLPs predicted potential energy well but faltered on free energy predictions. These results emphasize the challenge of assembling an all-encompassing training set for accurate FES prediction and highlight the importance of understanding the FES in preparing training data. The study points out the limitations of MLPs in free energy calculations, stressing the need for comprehensive data that encompasses the system's full FES for effective model training.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要