Improving Robustness of Convolutional Networks Through Sleep-Like Replay
International Conference on Machine Learning and Applications(2023)
Abstract
Convolutional neural networks (CNNs) are a foun-dational model architecture utilized to perform a wide variety of visual tasks. On image classification tasks CNNs achieve high performance, however model accuracy degrades quickly when inputs are perturbed by distortions such as additive noise or blurring. This drop in performance partly arises from incorrect detection of local features by convolutional layers. In this work, we develop a neuroscience-inspired unsupervised Sleep Replay Consolidation (SRC) algorithm for improving convolutional fil-ter's robustness to perturbations. We demonstrate that sleep-based optimization improves the quality of convolutional layers by the selective modification of spatial gradients across filters. We further show that, compared to other approaches such as fine-tuning, a single sleep phase improves robustness across different types of distortions in a data efficient manner.
MoreTranslated text
Key words
cnn,convolution,sleep,generalization,robust-ness
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined