WeChat Mini Program
Old Version Features

Dynamic Secure Multi Broad Network for Privacy Preserving of Streaming Data

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE(2024)

Sun Yat sen Univ

Cited 0|Views26
Abstract
Distributed computing as a widely concerned research direction needs to use the data training model of users, making the security of users' private data become a challenging problem to be solved. At present, federated learning is the mainstream research method to solve this problem. However, federated learning is not good at distributed training on streaming data. In real scenarios, the client's data is usually continuously updated streaming data. In this paper, we propose Dynamic Secure Multi Broad Network (DSMBN), which is a novel privacy computing framework completely different from federated learning. In DSMBN, we design three interactive communication protocols to handle streaming data in different scenarios. The function of the protocol is to use random mapping to encrypt data during the interaction. The protocol ensures that the client's original data does not leave the local server when generating mapped features. The central server uses the resulting mapped features (essentially encrypted data) instead of the original data to train machine learning models. In theoretical analysis, we analyze the first protocol's security, communication costs, and computational complexity. In the experiment, we design seven experimental scenarios, including quantity balance, Non-IID data distribution and streaming data, and compare them with several mainstream privacy protection machine learning methods. The experimental results show that compared with centralized training without privacy protection, DSMBN can achieve the same test accuracy under the premise of protecting private data security. Compared with mainstream federated learning methods, DSMBN can achieve higher accuracy in the Non-IID scenarios and save computing time and communication resources.
More
Translated text
Key words
Streaming data,secure multi-party computing,distributed computing,broad learning system
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined