WeChat Mini Program
Old Version Features

Cloning and Functional Analysis of Gb4CL1 and Gb4CL2 from Ginkgo Biloba.

PLANT GENOME(2024)

Yangtze Univ

Cited 0|Views40
Abstract
Abstract4‐Coumarate‐CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue‐specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall‐related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.
More
Translated text
Key words
Ginkgo Biloba
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined