WeChat Mini Program
Old Version Features

Introduction to an Open-Source Tool for Collective Earth System Model Evaluation and Benchmarking: PCMDI Metrics Package (PMP)

crossref(2024)

Cited 0|Views29
Abstract
The PCMDI Metrics Package (PMP) is an open-source Python-based framework that enables objective "quick-look" comparisons and benchmarking of Earth System Models (ESMs) against observation-based reference datasets. The PMP, which is focused primarily on atmospheric quantities, has been used for routine and systematic evaluation of thousands of simulations from the Coupled Model Intercomparison Project (CMIP). Ongoing work aims for seamless application of the tool to the next generation of CMIP (CMIP7), with an aspiration to aid modeling groups during their development cycle. The latest version of PMP offers a diverse suite of evaluation capabilities covering large- to global-scale climatology and annual cycle, variability modes such as tropical and extratropical variability modes e.g., ENSO and MJO, regional monsoons, cloud feedback, and high frequency characteristics e.g., extremes. Current work is expanding the scope of PMP to include the evaluation of the following: (1) Quasi-Biennial Oscillation (QBO) and its teleconnection to MJO, (2) atmospheric blocking and rivers leveraging Machine Learning based pattern detection algorithms, and (3) polar and high-latitude regions by implementing sectional sea-ice area metrics. The PMP is also advancing its evaluation capabilities to help evaluate higher resolution simulations such as those from the HighResMIP, cloud-resolving E3SM experiments, and regionally downscaled products. This presentation will highlight the motivation for routine model evaluation, introduce the PMP, share progress on current polar metrics, and discuss future plans and opportunities to connect with ongoing efforts.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined