WeChat Mini Program
Old Version Features

Exploring Extreme Flow Events and Associated Patterns in Switzerland: a Dense Feed-Forward Neural Network Approach

crossref(2024)

Cited 0|Views17
Abstract
Switzerland relies significantly on sustainable water management to meet its diverse socio-economic and environmental needs. As climate change introduces heightened uncertainty in weather patterns, accurate forecasting of extreme flows from climatic data has become essential for efficient water resource management in the country. Furthermore, these events are likely shaped by nonlinear hydroclimatic and compound conditions distinct from typical average cases. A thorough understanding of these phenomena is therefore crucial for effective adaptation to changing climatic conditions. In this regard, data-driven techniques, such as Machine Learning algorithms, have proven capable of extracting knowledge from vast amounts of data, providing valuable insights into the underlying climate and societal dynamics driving extreme flow events. The aim of the present study is therefore twofold. First, we evaluate the ability of a Dense feed-forward Neural Network (DNN) model to predict drought and peak flow events in Switzerland based on anthropogenic, environmental and climatic data. On the other side, we investigate the role of each driver in the prediction and we study the temporal trends of the target and the features. The analysis was conducted on a large dataset consisting of daily discharge data from more than 400 sites across the country, from 1999 to 2019. First, we evaluated the flow distribution at each individual site, considering only the extreme events and developing two distinct DNN models for droughts and for peaks. The DNN performed better in modeling droughts, achieving in the test set a mean Nash-Sutcliffe efficiency coefficient of 0.6 and a mean Kling-Gupta efficiency coefficient of 0.8, compared to 0.1 and 0.38, respectively, for the peaks. A sensitivity analysis of the features, such as the cumulative precipitation and mean air temperature in the preceding weeks of the event, was performed. In addition, we delved into a detailed examination of the temporal trends of the climatic drivers and the extreme flow rates over the 20 years of the study. In the subsequent phase of the project, we explored a multi-site modeling approach to address the issue of the DNN model's poor performance in predicting peak flows. We introduced geographic, land use and other anthropogenic factors specific to each watershed. By revealing the predictive potential of data-driven models, this study serves as a valuable foundation and resource for addressing extreme flow events and the hydroclimatic and anthropogenic patterns behind them.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined