A Statistical Approach to System Suitability Testing for Mass Spectrometry Imaging
RAPID COMMUNICATIONS IN MASS SPECTROMETRY(2024)
North Carolina State Univ
Abstract
RationaleMass spectrometry imaging (MSI) elevates the power of conventional mass spectrometry (MS) to multidimensional space, elucidating both chemical composition and localization. However, the field lacks any robust quality control (QC) and/or system suitability testing (SST) protocols to monitor inconsistencies during data acquisition, both of which are integral to ensure the validity of experimental results. To satisfy this demand in the community, we propose an adaptable QC/SST approach with five analyte options amendable to various ionization MSI platforms (e.g., desorption electrospray ionization, matrix-assisted laser desorption/ionization [MALDI], MALDI-2, and infrared matrix-assisted laser desorption electrospray ionization [IR-MALDESI]).MethodsA novel QC mix was sprayed across glass slides to collect QC/SST regions-of-interest (ROIs). Data were collected under optimal conditions and on a compromised instrument to construct and refine the principal component analysis (PCA) model in R. Metrics, including mass measurement accuracy and spectral accuracy, were evaluated, yielding an individual suitability score for each compound. The average of these scores is utilized to inform if troubleshooting is necessary.ResultsThe PCA-based SST model was applied to data collected when the instrument was compromised. The resultant SST scores were used to determine a statistically significant threshold, which was defined as 0.93 for IR-MALDESI-MSI analyses. This minimizes the type-I error rate, where the QC/SST would report the platform to be in working condition when cleaning is actually necessary. Further, data scored after a partial cleaning demonstrate the importance of QC and frequent full instrument cleaning.ConclusionsThis study is the starting point for addressing an important issue and will undergo future development to improve the efficiency of the protocol. Ultimately, this work is the first of its kind and proposes this approach as a proof of concept to develop and implement universal QC/SST protocols for a variety of MSI platforms.
MoreTranslated text
Key words
Mass Spectrometry,Sample Preparation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined