WeChat Mini Program
Old Version Features

Rapid Bathymetry Mapping Based on Shallow Water Cloud Computing in Small Bay Waters: Pilot Project in Pacitan-Indonesia

Journal of Environmental Management and Tourism(2024)

Department of Geography Information Science

Cited 0|Views4
Abstract
Mapping coastal areas generally requires large data constellations in time series and requires analysis using complex mathematical and modeling approaches. In shallow-water bathymetric mapping, remote sensing plays an important role in supporting conventional bathymetric mapping, especially in areas that are difficult to access. This method called Satellite Derived Bathymetry (SDB). The cloud computing approach is a solution for mapping shallow water bathymetry rapid and effectively. This study using Google Earth Engine (GEE) to compute remote sensing data for produce near-shore bathymetry. The method of Li et al. (2021) performs bathymetric extraction without using depth samples but uses chlorophyll-A as input for depth extraction parameter calculations. This study examines a small bay in the waters of Pacitan, Anakan Bay, and the waters of Kemujan Island in the Karimunjawa Islands. Within this study area, significant differences in resulting depth are very limited, ranging from 0 to -17.8. The developed model, based on the algorithm proposed by Li et al. (2021), is estimated to be able to provide accurate predictions of up to around 90% in the waters studied, with a root mean error rate (RMSE) of 1.1 meters.
More
Translated text
Key words
sdb,cloud computing,gee,bathymetry
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined