WeChat Mini Program
Old Version Features

U2PNet: an Unsupervised Underwater Image-Restoration Network Using Polarization

IEEE Transactions on Cybernetics(2024)CCF BSCI 1区

Northwestern Polytech Univ

Cited 12|Views107
Abstract
This article presents U(2)PNet, a novel unsupervised underwater image restoration network using polarization for improving signal-to-noise ratio and image quality in underwater imaging environments. Traditional methods for underwater image restoration using polarization require specific cues or pairs of underwater polarization datasets, which limit their practical applications. Our proposed method requires only one mosaicked polarized image of the scene and does not require datasets for pretraining or specific cues. We design two subnetworks (T-net and B-infinity -net) to accurately estimate the transmission map and background light, and unique nonreference loss functions to ensure effective restoration. Our experiments are based on an indoor polarization simulated dataset and a real polarization image dataset constructed from our underwater robotic platform equipped with polarization cameras. Experiment results demonstrate that our proposed method achieves state-of-the-art performance on both simulated and real underwater polarization images.
More
Translated text
Key words
Light scattering,polarization,underwater image restoration,unsupervised network,untrained network
PDF
Bibtex
AI Read Science
Video&Figures
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers

Rethinking of Underwater Image Restoration Based on Circularly Polarized Light

Chao Wang, Zhiyang Wu, Zexiong Han, Junguang Wang,Haofeng Hu,Xiaobo Li
PHOTONICS 2024

被引用3

Toward Individual Tone Preference in Underwater Image Enhancement

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2024

被引用0

A Patch-Based Method for Underwater Image Enhancement with Denoising Diffusion Models

Haisheng Xia, Binglei Bao, Fei Liao, Jintao Chen,Binglu Wang,Zhijun Li
IEEE TRANSACTIONS ON CYBERNETICS 2024

被引用0

Perspective on Wearable Systems for Human Underwater Perceptual Enhancement

Haisheng Xia, Fei Liao, Binglei Bao, Jintao Chen,Binglu Wang,Qinghua Huang,Zhijun Li
IEEE TRANSACTIONS ON CYBERNETICS 2024

被引用0

Multi-Level Perception Assessment for Underwater Image Enhancement

Yiwen Xu, Yuxiang Lin, Nian He,Xuejin Wang,Tiesong Zhao
IEEE TRANSACTIONS ON BROADCASTING 2025

被引用0

Polarimetric Image Recovery Method with Domain-Adversarial Learning for Underwater Imaging

Fei Tian, Jiuming Xue, Zhedong Shi, Hongling Luo, Wanyuan Cai,Wei Tao
SCIENTIFIC REPORTS 2025

被引用0

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出了一种利用极化来改善水下成像环境中信噪比和图像质量的新型无监督水下图像修复网络U2PNet。传统的水下图像修复方法使用极化需要特定线索或一对水下极化数据集,限制了其实际应用。我们的方法只需要一个场景极化图像和不需要预训练数据集或特定线索。我们设计了两个子网络(T-net和B-net)来准确估计透射图和背景光,并采用独特的非参考损失函数来确保有效的修复。我们的实验基于室内极化模拟数据集和由装备有极化摄像头的水下机器人平台构建的真实极化图像数据集。实验结果表明,我们提出的方法在模拟和真实水下极化图像上均达到了最先进的性能。代码和数据集可在https://github.com/polwork/U-2Pnet获得。

方法】:提出了U2PNet,一种无监督水下图像修复网络,利用极化来改善水下成像环境中的信噪比和图像质量。

实验】:基于室内极化模拟数据集和由装备有极化摄像头的水下机器人平台构建的真实极化图像数据集,实验结果表明我们的方法在模拟和真实水下极化图像上达到了最先进的性能。