Significant Improvement in Soil Organic Carbon Estimation Using Data-Driven Machine Learning Based on Habitat Patches

REMOTE SENSING(2024)

引用 0|浏览3
暂无评分
摘要
Soil organic carbon (SOC) is generally thought to act as a carbon sink; however, in areas with high spatial heterogeneity, using a single model to estimate the SOC of the whole study area will greatly reduce the simulation accuracy. The earth surface unit division is important to consider in building different models. Here, we divided the research area into different habitat patches using partitioning around a medoids clustering (PAM) algorithm; then, we built an SOC simulation model using machine learning algorithms. The results showed that three habitat patches were created. The simulation accuracy for Habitat Patch 1 (R2 = 0.55; RMSE = 2.89) and Habitat Patch 3 (R2 = 0.47; RMSE = 3.94) using the XGBoost model was higher than that for the whole study area (R2 = 0.44; RMSE = 4.35); although the R2 increased by 25% and 6.8%, the RMSE decreased by 33.6% and 9.4%, and the field sample points significantly declined by 70% and 74%. The R2 of Habitat Patch 2 using the RF model increased by 17.1%, and the RMSE also decreased by 10.5%; however, the sample points significantly declined by 58%. Therefore, using different models for corresponding patches will significantly increase the SOC simulation accuracy over using one model for the whole study area. This will provide scientific guidance for SOC or soil property monitoring with low field survey costs and high simulation accuracy.
更多
查看译文
关键词
soil organic carbon,clustering algorithm,machine learning,digital soil mapping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要