WeChat Mini Program
Old Version Features

Self-adaptive Pulse Shape Identification by Using Gaussian Mixture Model

Zhiqiang Cheng, Qingxian Zhang,Heyi Tan,Chunhui Dong, Xin Hou, Jian Zhang,Xiaozhe Li,Hongfei Xiao

RADIATION MEASUREMENTS(2024)

Chengdu Univ Technol

Cited 0|Views1
Abstract
Identifying the pulse shape is a crucial step in detecting the contamination of surfaces by α/β radioactive isotopes. In this study, the authors propose a self-adaptive method to identify the pulse shape by applying the Gaussian mixture model and the constant-fraction timing algorithm to a ZnS(Ag) and plastic scintillator to improve its accuracy of detection of low-energy particles, and realize automatic calibration to reduce the operational difficulty of the process and improve its stability. The proposed method comprises a feature extraction algorithm running on an FPGA as well as a classifier and a training machine running on an embedded processor. The feature extraction algorithm forms the core of the proposed method, is independent of the amplitude of the pulse signal, and can extract important information (pulse width and rise time) from the pulse signals to simplify the probabilistic model. The proposed method was tested on a ZnS(Ag) plastic scintillator, and the results showed that the feature extraction algorithm was more robust against errors in the amplitude of the pulse signal than the method that involves using a fixed threshold. The error in its results compared with those of measurements could be controlled to within 4% during mixed radiation field tests involving a single source of radiation. Moreover, we have deployed a complete program to train the model on the platform to support onboard model training and self-adaptive parameter estimation without requiring human intervention.
More
Translated text
Key words
Pulse shape discrimination,Radiation detectors,Constant fraction timing,Gaussian mixture model,Self -adaptive
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined