Proton and helium ions acceleration in near-critical density gas targets by short-pulse Ti:Sa PW-class laser

J. L. Henares, P. Puyuelo-Valdes, C. Salgado-Lopez, J. I. Apinaniz, P. Bradford, F. Consoli,D. de Luis, M. Ehret, F. Hannachi, R. Hernandez-Martin, A. Huber, L. Lancia, M. Mackeviciute, A. Maitrallain, J. -R. Marques, J. A. Perez-Hernandez, C. Santos, J. J. Santos, V. Stankevic, M. Tarisien, V. Tomkus, L. Volpe, G. Gatti

JOURNAL OF PLASMA PHYSICS(2023)

引用 0|浏览0
暂无评分
摘要
The ability to quickly refresh gas-jet targets without cycling the vacuum chamber makes them a promising candidate for laser-accelerated ion experiments at high repetition rate. Here we present results from the first high repetition rate ion acceleration experiment on the VEGA-3 PW-class laser at CLPU. A near-critical density gas-jet target was produced by forcing a 1000 bar H$_2$ and He gas mix through bespoke supersonic shock nozzles. Proton energies up to 2 MeV were measured in the laser forward direction and 2.2 MeV transversally. He$<^>{2+}$ ions up to 5.8 MeV were also measured in the transverse direction. To help maintain a consistent gas density profile over many shots, nozzles were designed to produce a high-density shock at distances larger than 1 mm from the nozzle exit. We outline a procedure for optimizing the laser-gas interaction by translating the nozzle along the laser axis and using different nozzle materials. Several tens of laser interactions were performed with the same nozzle which demonstrates the potential usefulness of gas-jet targets as high repetition rate particle source.
更多
查看译文
关键词
intense particle beams,plasma diagnostics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要