WeChat Mini Program
Old Version Features

Development and Multi-Institutional Validation of a Deep Learning Model for Grading of Vesicoureteral Reflux on Voiding Cystourethrogram: a Retrospective Multicenter Study.

Zhanchi Li, Zelong Tan,Zheyuan Wang,Wenjuan Tang,Xiang Ren, Jinhua Fu, Guangbing Wang,Han Chu, Jiarong Chen,Yuhe Duan,Likai Zhuang,Min Wu

ECLINICALMEDICINE(2024)

Shanghai Jiao Tong Univ

Cited 0|Views9
Abstract
Summary: Background: Voiding cystourethrography (VCUG) is the gold standard for the diagnosis and grading of vesicoureteral reflux (VUR). However, VUR grading from voiding cystourethrograms is highly subjective with low reliability. This study aimed to develop a deep learning model to improve reliability for VUR grading on VCUG and compare its performance to that of clinicians. Methods: In this retrospective study in China, VCUG images were collected between January 2019 and September 2022 from our institution as an internal dataset for training and 4 external data sets as external testing set for validation. Samples were divided into training (N = 1000) and validation sets (N = 500), internal testing set (N = 168), and external testing set (N = 280). An ensemble learning-based model, Deep-VCUG, using Res-Net 101 and the voting methods was developed to predict VUR grade. The grading performance was assessed using heatmaps, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, and F1 score in the internal and external testing set. The performances of four clinicians (2 pediatric urologists and 2 radiologists) with and without the Deep-VCUG assisted to predict VUR grade were explored in external testing sets. Findings: A total of 1948 VCUG images were collected (Internal dataset = 1668; multi-center external dataset = 280). For assessing unilateral VUR grading, the Deep-VCUG achieved AUCs of 0.962 (95% confidence interval [CI]: 0.943–0.978) and 0.944 (95% [CI]: 0.921–0.964) in the internal and external testing sets, respectively, for bilateral VUR grading, the Deep-VCUG also achieved high AUCs of 0.960 (95% [CI]: 0.922–0.983) and 0.924 (95% [CI]: 0.887–0.957). The Deep-VCUG model using voting method outperformed single model and clinician in terms of classification based on VCUG image. Moreover, Under the Dee-VCUG assisted, the classification ability of junior and senior clinicians was significantly improved. Interpretation: The Deep-VCUG model is a generalizable, objective, and accurate tool for vesicoureteral reflux grading based on VCUG imaging and had good assistance with clinicians to VUR grading applicability. Funding: This study was supported by Natural Science Foundation of China, “Fuqing Scholar” Student Scientific Research Program of Shanghai Medical College, Fudan University, and the Program of Greater Bay Area Institute of Precision Medicine (Guangzhou).
More
Translated text
Key words
Deep learning,Voiding cystourethrography,Bilateral vesicoureteral reflux,Ensemble learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined