Evaluating Computer Vision, Large Language, and Genome-Wide Association Models in a Limited Sized Patient Cohort for Pre-Operative Risk Stratification in Adult Spinal Deformity Surgery
Journal of Clinical Medicine(2024)
Stanford Univ
Abstract
Background: Adult spinal deformities (ASD) are varied spinal abnormalities, often necessitating surgical intervention when associated with pain, worsening deformity, or worsening function. Predicting post-operative complications and revision surgery is critical for surgical planning and patient counseling. Due to the relatively small number of cases of ASD surgery, machine learning applications have been limited to traditional models (e.g., logistic regression or standard neural networks) and coarse clinical variables. We present the novel application of advanced models (CNN, LLM, GWAS) using complex data types (radiographs, clinical notes, genomics) for ASD outcome prediction. Methods: We developed a CNN trained on 209 ASD patients (1549 radiographs) from the Stanford Research Repository, a CNN pre-trained on VinDr-SpineXR (10,468 spine radiographs), and an LLM using free-text clinical notes from the same 209 patients, trained via Gatortron. Additionally, we conducted a GWAS using the UK Biobank, contrasting 540 surgical ASD patients with 7355 non-surgical ASD patients. Results: The LLM notably outperformed the CNN in predicting pulmonary complications (F1: 0.545 vs. 0.2881), neurological complications (F1: 0.250 vs. 0.224), and sepsis (F1: 0.382 vs. 0.132). The pre-trained CNN showed improved sepsis prediction (AUC: 0.638 vs. 0.534) but reduced performance for neurological complication prediction (AUC: 0.545 vs. 0.619). The LLM demonstrated high specificity (0.946) and positive predictive value (0.467) for neurological complications. The GWAS identified 21 significant (p < 10−5) SNPs associated with ASD surgery risk (OR: mean: 3.17, SD: 1.92, median: 2.78), with the highest odds ratio (8.06) for the LDB2 gene, which is implicated in ectoderm differentiation. Conclusions: This study exemplifies the innovative application of cutting-edge models to forecast outcomes in ASD, underscoring the utility of complex data in outcome prediction for neurosurgical conditions. It demonstrates the promise of genetic models when identifying surgical risks and supports the integration of complex machine learning tools for informed surgical decision-making in ASD.
MoreTranslated text
Key words
adult spinal deformity,computer vision,large language model,genome wide associated study,sepsis,neurological complication,spine surgery
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined