Probabilistic Photonic Computing with Chaotic Light

arxiv(2024)

引用 0|浏览5
暂无评分
摘要
Biological neural networks effortlessly tackle complex computational problems and excel at predicting outcomes from noisy, incomplete data, a task that poses significant challenges to traditional processors. Artificial neural networks (ANNs), inspired by these biological counterparts, have emerged as powerful tools for deciphering intricate data patterns and making predictions. However, conventional ANNs can be viewed as "point estimates" that do not capture the uncertainty of prediction, which is an inherently probabilistic process. In contrast, treating an ANN as a probabilistic model derived via Bayesian inference poses significant challenges for conventional deterministic computing architectures. Here, we use chaotic light in combination with incoherent photonic data processing to enable high-speed probabilistic computation and uncertainty quantification. Since both the chaotic light source and the photonic crossbar support multiple independent computational wavelength channels, we sample from the output distributions in parallel at a sampling rate of 70.4 GS/s, limited only by the electronic interface. We exploit the photonic probabilistic architecture to simultaneously perform image classification and uncertainty prediction via a Bayesian neural network. Our prototype demonstrates the seamless cointegration of a physical entropy source and a computational architecture that enables ultrafast probabilistic computation by parallel sampling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要