WeChat Mini Program
Old Version Features

Availability Evaluation of Solar Photovoltaic Systems Using Markov Modeling and Cuckoo Search Algorithm

JOURNAL OF INTELLIGENT & FUZZY SYSTEMS(2024)

Manipal Univ Jaipur

Cited 1|Views5
Abstract
The main objective of present investigation is to evaluate and optimize the operational availability of the solar photovoltaic systems. As the solar energy is a prominent source of renewal energy and contribute a lot in global development having less environmental impacts but the safety and reliability issues of these systems also observed during the operational phase. Availability is an effective tool that is used to discourse the safety and performance issues of renewal energy sources especially solar photovoltaic systems. Here, a stochastic model is developed for solar photovoltaic system having solar photovoltaic plates, solar charger, solar battery, and inverter. The Markov birth-death process is applied for development of the mathematical model of the proposed system. The chapman-Kolmogorov differential difference equations of the proposed solar photovoltaic system used to predict the steady state availability of system. On the basis of literature, the failure and repair rates of all components of solar photovoltaic system are considered as exponentially distributed. In addition, an effort is also made to predict the optimum availability of solar photovoltaic system using well-known optimization technique cuckoo search algorithm. It is revealed that, the predicted availability of the solar photovoltaic system is 0.9988799 at population size 60 after 700 iterations. The estimated parametric values of the failure and repair rates also derived. To highlight the importance of the study the numerical and graphical results are presented and shared with the system designers and maintenance engineers.
More
Translated text
Key words
Renewal energy sources,solar photovoltaic systems,markov models,cuckoo search algorithm,availability
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined