WeChat Mini Program
Old Version Features

Application of Trigonometric Polynomial Fitting Method in Simulating the Spatial Distribution of PM2.5 Concentration in South-Central China

ATMOSPHERE(2024)

Dalian Jiaotong Univ

Cited 0|Views18
Abstract
Near-surface PM2.5 estimates remain a global scientific research challenge due to their effect on human fitness and atmospheric environmental quality. However, practical near-surface PM2.5 estimates are impeded by the incomplete monitoring data. In this study, we propose the trigonometric polynomial fitting (TPF) method to estimate near-surface PM2.5 concentrations in south-central China during 2015. We employ 10-fold cross-validation (CV) to assess the reliability of TPF in estimating practical PM2.5 values. When compared to alternative methods such as the orthogonal polynomial fitting (OBF) method based on Chebyshev basis functions, Kriging interpolation, and radial basis function (RBF) interpolation, our results show that utilizing TPF31, with a maximum order of 3 in the x direction and a maximum order of 1 in the y direction, leads to superior efficiency through error minimization. TPF31 reduces MAE and RMSE by 1.93%, 24%, 6.96% and 3.6%, 23.07%, 10.43%, respectively, compared to the other three methods. In addition, the TPF31 method effectively reconstructs the spatial distribution of PM2.5 concentrations in the unevenly distributed observation stations of Inner Mongolia and the marginal regions of the study area. The reconstructed spatial distribution is remarkably smooth. Despite the non-uniform distribution of observation stations and the presence of missing data, the TPF31 method demonstrates exceptional effectiveness in accurately capturing the inherent physical attributes of spatial distribution. The theoretical and experimental results emphasize that the TPF method holds significant potential for accurately reconstructing the spatial distribution of PM2.5 in China.
More
Translated text
Key words
fine particle (PM2.5),south-central China,trigonometric polynomial fitting,air-quality monitoring and modelling
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined