Accurate Description of Ion Migration in Solid-State Ion Conductors from Machine-Learning Molecular Dynamics

Takeru Miyagawa, Namita Krishnan, Manuel Grumet, Christian Reverón Baecker,Waldemar Kaiser,David A. Egger

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Solid-state ion conductors (SSICs) have emerged as a promising material class for electrochemical storage devices and novel compounds of this kind are continuously being discovered. High-throughout approaches that enable a rapid screening among the plethora of candidate SSIC compounds have been essential in this quest. While first-principles methods are routinely exploited in this context to provide atomic-level details on ion migration mechanisms, dynamic calculations of this type are computationally expensive and limit us in the time- and length-scales accessible during the simulations. Here, we explore the potential of recently developed machine-learning force fields for predicting different ion migration mechanisms in SSICs. Specifically, we systematically investigate three classes of SSICs that all exhibit complex ion dynamics including vibrational anharmonicities: AgI, a strongly disordered Ag^+ conductor; Na_3SbS_4, a Na^+ vacancy conductor; and Li_10GeP_2S_12, which features concerted Li^+ migration. Through systematic comparison with ab initio molecular dynamics data, we demonstrate that machine-learning molecular dynamics provides very accurate predictions of the structural and vibrational properties including the complex anharmonic dynamics in these SSICs. The ab initio accuracy of machine-learning molecular dynamics simulations at relatively low computational cost open a promising path toward the rapid design of novel SSICs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要