WeChat Mini Program
Old Version Features

Deep Anomaly Detection with Attention (DADA): A Novel Approach for Identifying Multipath Interference in Radar Signals

IET Signal Processing(2024)

Southwest Jiaotong Univ

Cited 0|Views19
Abstract
Multipath interference in radar signals caused by sea, ground, and other environments poses significant challenges to the target detection, tracking, and classification capabilities of radar systems. Existing methods for radar signal identification require labeled samples and focus mainly on the classification of normal signals. However, in practice, anomalous samples (multipath interference signals) may be scarce and highly imbalanced (i.e., mostly normal samples). To address this problem, we propose a deep anomaly detection with attention (DADA) for semisupervised detection of multipath radar signals. The method transforms radar signals into time–frequency images and is trained exclusively on normal samples. The autoencoder architecture is extended with a feature extractor network to capture latent sample features. CBAM attention is introduced to improve feature extraction. By learning the distribution of normal samples in high-dimensional image space and low-dimensional feature space, a two-dimensional feature space representing normal samples is constructed. A one-class SVM then learns the boundary of normal samples for anomaly detection. Extensive experiments on radar signal datasets validate the effectiveness of the proposed approach.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined