miR-345-3p Modulates M1/M2 Macrophage Polarization to Inhibit Inflammation in Bone Infection via Targeting MAP3K1 and NF-κB Pathway.

Yan Dai, Xiaolan Yi, Yahui Huang, Kaoliang Qian, Lili Huang,Jun Hu,Yuan Liu

Journal of immunology (Baltimore, Md. : 1950)(2024)

引用 0|浏览5
暂无评分
摘要
Infection after fracture fixation (IAFF), a complex infectious disease, causes inflammatory destruction of bone tissue and poses a significant clinical challenge. miR-345-3p is a biomarker for tibial infected nonunion; however, the comprehensive mechanistic role of miR-345-3p in IAFF is elusive. In this study, we investigated the role of miR-345-3p in IAFF pathogenesis through in vivo and in vitro experiments. In vivo, in a rat model of IAFF, miR-345-3p expression was downregulated, accompanied by increased M1 macrophage infiltration and secretion of proinflammatory factors. In vitro, LPS induced differentiation of primary rat bone marrow-derived macrophages into M1 macrophages, which was attenuated by miR-345-3p mimics. miR-345-3p promoted M1 to M2 macrophage transition-it reduced the expression of cluster of differentiation (CD) 86, inducible NO synthase, IL-1β, and TNF-α but elevated those of CD163, arginase-1, IL-4, and IL-10. MAPK kinase kinase 1 (MAP3K1), a target mRNA of miR-345-3p, was overexpressed in the bone tissue of IAFF rats compared with that in those of the control rats. The M1 to M2 polarization inhibited MAP3K1 signaling pathways in vitro. Conversely, MAP3K1 overexpression promoted the transition from M2 to M1. miR-345-3p significantly inhibited NF-κB translocation from the cytosol to the nucleus in a MAP3K1-dependent manner. In conclusion, miR-345-3p promotes the polarization of M1 macrophages to the M2 phenotype by inhibiting the MAP3K1 and NF-κB pathways. These findings provide insight into the pathogenesis and immunotherapeutic strategies for IAFF and offer potential new targets for subsequent research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要