Mitochondria-containing extracellular vesicles from mouse vs . human brain endothelial cells for ischemic stroke therapy.

Kandarp M Dave, Venugopal R Venna,Krithika S Rao,Donna B Stolz,Victoria A Quaicoe, Michael E Maniskas, Ella E Hildebrand, Dawson Green, Mingxi Chen,Jadranka Milosevic,Si-Yang Zheng, Sruti S Shiva,Louise D McCullough,Devika S Manickam

bioRxiv : the preprint server for biology(2024)

引用 0|浏览2
暂无评分
摘要
Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously reported that intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated if EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) show a greater EV mitochondria delivery efficiency than cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that mBEC-EVs outperformed hBEC-EVs in transferring EV mitochondria to the recipient ischemic mBECs, and improved mBEC mitochondrial function via increasing oxygen consumption rate. mBEC-EVs significantly reduced brain infarct volume and improved behavioral recovery compared to vehicle-injected MCAo mice. Our data suggests that mBEC-EVs show superior therapeutic efficacy in a mouse MCAo stroke model compared to hBEC-EVs-supporting the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要