A novel semi-resolved CFD-DEM method with two-grid mapping: Methodology and verification

AICHE JOURNAL(2024)

引用 0|浏览7
暂无评分
摘要
The semi-resolved Computational Fluid Dynamics coupled with the Discrete Element Method (CFD-DEM) method has emerged as approach to modeling particle-fluid interactions in granular materials with high particle size ratios. However, challenges arise from conflicting requirements regarding the CFD grid size, which must adequately resolve fluid flow in the pore space while maintaining a physically meaningful porosity field. This study addresses these challenges by introducing a two-grid mapping approach. Initially, the porosity field associated with fine particles is estimated using a coarse CFD grid, which is then mapped to a dynamically refined grid. To ensure conservation of total solid volume, a volume compensation procedure is implemented. The proposed method has been rigorously verified using benchmark cases, showing its high computational efficiency and accurate handling of complex porosity calculations near the surface of coarse particles. Moreover, the previously unreported impact of the empirical drag correlation on fluid-particle force calculations for both coarse and fine particles has been revealed.
更多
查看译文
关键词
bimodal particles,CFD-DEM,semi-resolved,two-grid method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要