WeChat Mini Program
Old Version Features

不同分蘖特性甘蔗品种生产力差异和相关性研究

Journal of Agricultural Science and Technology(2023)

广西壮族自治区农业科学院甘蔗研究所

Cited 0|Views15
Abstract
为分析不同分蘖力特性甘蔗品种的生产力差异及内在关联,为合理促进甘蔗分蘖及构建合理的群体结构提供参考,选用分蘖强的桂糖29号、分蘖中等的桂糖42号和分蘖弱的桂糖03-2112共3个品种为试验材料,采用单因素随机区组设计,进行2年新植试验,测定不同甘蔗品种的农艺性状、产量和品质,探讨不同分蘖特性甘蔗品种性状及产量形成的因素,并分析它们在产量形成中的相互关系.2年试验结果表明,甘蔗的分蘖力与分蘖率成正比,强、中、弱品种间的分蘖率差异达极显著水平;不同品种间的有效茎数也表现出相似的结果,分蘖力强的桂糖29号的有效茎数比分蘖力弱的桂糖03-2112多20 575条·hm-2,差异达到显著水平;通过甘蔗品质分析发现,分蘖强的桂糖29号和分蘖中等的桂糖42号的蔗糖分显著高于桂糖03-2112,这3个品种的主茎蔗糖分均高于分蘖茎,其中,2019年3个品种的主茎蔗糖分显著高于分蘖茎.相关性分析结果显示,在甘蔗产量形成过程中,分蘖率和出苗率对产量的贡献是独立的;单位面积甘蔗有效茎数与分蘖率呈极显著正相关,但不同分蘖力品种的株高和茎径与分蘖率均呈负相关,但不显著;分蘖率与蔗糖分呈显著正相关.上述结果表明,在甘蔗产量形成过程中,品种的出苗和分蘖率没有内在关联,分蘖力强的甘蔗品种具有高分蘖率,促进分蘖成茎可以获得较多的有效茎数,但分蘖力中等和弱的品种在产量形成中具有明显的株高和茎径优势;可见,不同分蘖力的甘蔗品种可通过协调主苗和分蘖苗情况,综合重要产量性状的生长发育,形成合理的主茎和分蘖茎比例,从而实现甘蔗高产.该研究结果为构建健壮个体和高产群体、发挥甘蔗分蘖的生产力、实现稳产高产栽培提供理论依据.
More
Translated text
Key words
tillering,productivity difference,correlation
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined