Deconer: A Comprehensive and Systematic Evaluation Toolkit for Reference-Based Cell Type Deconvolution Algorithms Using Gene Expression Data
biorxiv(2023)
Center of Intelligent Medicine
Abstract
In recent years, computational methods for quantifying cell type proportions from transcription data have gained significant attention, particularly those reference-based methods which have demonstrated high accuracy. However, there is currently a lack of comprehensive evaluation and guidance for available reference-based deconvolution methods in cell proportion deconvolution analysis. In this study, we propose a comprehensive evaluation toolkit, called Deconer, specifically designed for reference-based deconvolution methods. Deconer provides various simulated and real gene expression datasets, including both bulk and single-cell sequencing data, and offers multiple visualization interfaces. By utilizing Deconer, we conducted systematic comparisons of 14 reference-based deconvolution methods from different perspectives, including method robustness, accuracy in deconvolving rare components, signature gene selection, and building external reference. We also performed an in-depth analysis of the application scenarios and challenges in cell proportion deconvolution methods. Finally, we provided constructive suggestions for users in selecting and developing cell proportion deconvolution algorithms. This work presents novel insights to researchers, assisting them in choosing appropriate toolkits, applying solutions in clinical contexts, and advancing the development of deconvolution tools tailored to gene expression data.### Competing Interest StatementThe authors have declared no competing interest.
MoreTranslated text
Key words
Cell Types,Droplet-based Sequencing
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined