Adsorption of azoxystrobin and pyraclostrobin onto degradable and non-degradable microplastics: Performance and mechanism

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览12
暂无评分
摘要
Microplastics (MPs) exist after agricultural operations and thus present potential hazards to the environment and human health. However, the ecological risks posed by MPs carrying pesticides remain unclear. In this study, the adsorption and desorption behaviors of two pesticides, azoxystrobin and pyraclostrobin, on degradable and non-degradable MPs of poly(butylene adipate-co-terephthalate) (PBAT) and polyethylene (PE) were compared before and after UV aging. Additionally, the bioaccessibility of MPs carrying pesticides within a condition simulating gastrointestinal fluids was evaluated. The results showed that, after UV aging, the adsorption capacity of PBAT for pesticides decreased, while that of PE increased. Moreover, PBAT possessed higher adsorption ability towards both the pesticides due to its higher specific surface area, pore volume, contact angle, and lower crystallinity, as well as stronger van der Waals forces, electrostatic interactions, and hydrogen bonding indicated by theoretical calculation. Bioaccessibility experiments showed that azoxystrobin and pyraclostrobin had a higher risk of desorption from PBAT than PE, which is mainly dependent on the LogKow of pesticides according to the random forest analysis. In brief, the study highlights the potential risks of degradable MPs carrying pesticides to human health and the ecosystem, especially when compared to their non-degradable counterparts, manifesting that the ecological risk posed by degradable MPs should not be ignored.
更多
查看译文
关键词
Degradable microplastics,Pesticide,Adsorption mechanism,Desorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要