Exploring mechanical properties and failure mechanisms of aramid and PBO crystals through molecular dynamics simulations

JOURNAL OF CHEMICAL PHYSICS(2023)

引用 0|浏览0
暂无评分
摘要
Molecular dynamics simulations were used to analyze the mechanical properties and failure processes of poly(p-phenylene-terephthalamide) (PPTA), poly(p-phenylene-benzimidazole-terephthalamide) (PBIA), PBIA-PPTA (formed by 1:1 copolymerization of PPTA and PBIA), and poly(p-phenylene-benzobisoxazole) (PBO) crystals at different strain rates and temperatures. The failure stress and strain were found to be linear with the temperature and logarithmic strain rate. Moreover, based on the kinetic theory of fracture and the comprehensive simulation results, we formulated a model that describes the failure stress of the aforementioned crystals under varying strain rates and temperatures. Through the analysis of the failure process, we found that in PPTA, PBIA, and PBIA-PPTA crystals, the bond failure probability is correlated with the strain rate and temperature. The examination of bond lengths and angles unveiled that bonds with larger initial aligning angles are more susceptible to failure during the strain process. Intriguingly, the stretching process induced a conformational change in the PBO molecular chain, leading to a deviation from the linear relation in its stress-strain curve.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要