WeChat Mini Program
Old Version Features

A Lightweight Spatiotemporal Graph Dilated Convolutional Network for Urban Sensor State Prediction

SUSTAINABLE CITIES AND SOCIETY(2024)

Chinese Acad Sci

Cited 5|Views35
Abstract
Spatiotemporal prediction is one attractive research topic in urban computing, which is of great significance to urban planning and management. At present, there are many attempts to predict the spatiotemporal state of systems using various deep learning models. However, most existing models tend to improve prediction accuracy with larger parameter scale and time consumption, but ignoring ease of use in practice. To overcome this question, we propose a lightweight spatiotemporal graph dilated convolutional network called STGDN with satisfactory prediction accuracy and lower model complexity. More specifically, we propose a novel dilated convolution operator and integrate it into traditional causal convolutional networks and graph convolutional networks to greatly improve the efficiency of prediction. The proposed dilated convolution operator can significantly reduce the depth of the model, thereby reducing the parameter scale and improving the computational efficiency of the model. We conducted on multi experiments on three real-world spatiotemporal datasets (traffic dataset, PM2.5 dataset, and temperature dataset) to prove the effectiveness and advantage of our proposed STGDN. The experimental results show that the proposed STGDN model outperforms or achieves comparable prediction accuracy of the existing nine baselines with higher operational efficiency and fewer model parameters. Codes are available at anonymous private link on https://doi.org/10.6084/m9.figshare.23935683.
More
Translated text
Key words
Urban computing,Causal dilated convolution,Graph dilated convolution,Spatiotemporal prediction
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined