WeChat Mini Program
Old Version Features

土壤孔隙结构检测技术研究现状与展望

CAI Wei-zi, LIU Yi-ying, JIANG Jun, OUYANG Lin, YANG Yun-jin, LU Yu-qiang,HOU Jun-wei,QI Long,WANG Hai-lin

Journal of Shenyang Agricultural University(2023)

华南农业大学工程学院

Cited 0|Views12
Abstract
土壤孔隙是水气运移和生物运动的通道,在调节土壤肥力和生态功能中起着至关重要的作用.土壤孔隙结构的量化研究是认识土壤结构、明晰孔隙结构与宏观功能关系的前提.然而,受土壤自身复杂性的限制,目前土壤孔隙结构检测技术普遍存在精确度低、重复性差和操作复杂等问题.针对获取和量化土壤孔隙结构中的重点和难点,归纳了现有方法的优缺点、潜在误差源及应用场景.现有方法总体可分为两大类:间接法和直接观察法,间接法是利用土壤中水、气、声、热等特性获得孔隙直径、体积或孔固体表面积等信息,主要包括水分特征曲线法、压汞法、气体吸附法、声波法、热脉冲-时域反射法、变压法、回归分析法等;直接观察法可以通过几何可视化来直接观察土壤孔隙空间,并借助图像处理技术,从图像中提取大量的定量形态学和拓扑描述符进行评估,例如切片观察法、扫描电子显微镜技术、计算机断层扫描技术、核磁共振技术等.对表征土壤孔隙结构的定量化方法进行了总结,梳理了近5年常规统计法、地统计学和分形理论在土壤孔隙结构定量化研究上的应用和成果.最后对今后田间原位土壤孔隙结构检测的发展方向进行了展望,尝试为土壤孔隙结构的现场检测装置研发提供理论参考和新思路.
More
Key words
soil,pore structure,detection technology,quantification,research status,development trend
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined