WeChat Mini Program
Old Version Features

Using Random Undersampling and Ensemble Feature Selection for IoT Attack Prediction

INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING(2024)

Florida Atlantic Univ

Cited 1|Views11
Abstract
One consequence of the widespread use of (IoT) devices is an increase in the volume of attacks on (IoT) networks. In this study, we focus on the Bot-IoT dataset, with the aim of classifying its four types of attacks: Denial-of-Service (DoS), Distributed Denial-of-Service (DDoS), Reconnaissance, and Information Theft. Our contribution is based on the evaluation of the Random Undersampling (RUS) technique and ensemble Feature Selection Techniques (FSTs). Our results indicate that RUS has a positive impact on overall classification performance. Furthermore, our results show that the FSTs are beneficial for DoS, Reconnaissance, and Information Theft classification but not for DDoS classification. Finally, we note that the ensemble classifiers have generally outperformed the nonensemble classifiers in our study.
More
Translated text
Key words
Bot-IoT,ensemble feature selection,big data,machine learning,random undersampling
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined