Comparative Analysis of Segmentation and Generative Models for Fingerprint Retrieval Task
CoRR(2022)
Birla Institute of Technology and Science
Abstract
Biometric Authentication like Fingerprints has become an integral part of the modern technology for authentication and verification of users. It is pervasive in more ways than most of us are aware of. However, these fingerprint images deteriorate in quality if the fingers are dirty, wet, injured or when sensors malfunction. Therefore, extricating the original fingerprint by removing the noise and inpainting it to restructure the image is crucial for its authentication. Hence, this paper proposes a deep learning approach to address these issues using Generative (GAN) and Segmentation models. Qualitative and Quantitative comparison has been done between pix2pixGAN and cycleGAN (generative models) as well as U-net (segmentation model). To train the model, we created our own dataset NFD - Noisy Fingerprint Dataset meticulously with different backgrounds along with scratches in some images to make it more realistic and robust. In our research, the u-net model performed better than the GAN networks
MoreTranslated text
Key words
Image Forgery Detection,Feature Learning,Facial Landmark Detection,Resampling Detection,Camera Model Identification
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined