WeChat Mini Program
Old Version Features

Unsupervised Probabilistic Machine Learning Applied to Seismicity Declustering: a New Approach to Represent Earthquake Catalogues with Fewer Assumptions

Antoine Septier, Alexandra Renouard,Jacques Déverchère,Julie Perrot

openalex(2023)

Université de Brest

Cited 0|Views2
Abstract
Many applications in seismology require to isolate earthquake clusters from a background activity. Relative declustering methods essentially find a 2D representation of an earthquake catalogue that distinguishes between two classes of events: crisis and non-crisis events. However, the number of statistical and/or physical parameters to be used is often limited due to the difficulty of concatenating the information onto a physically meaningful 2D grid. In this study, we propose to alleviate the declustering task by using the ability of unsupervised artificial intelligence to model complex spatio-temporal relationships directly from data. Through a data-driven approach, we define an easily transferable declustering model that provides declustering results with fewer assumptions and no prior selection of thresholds. We first obtain this model by training a self-organising neural network (SOM) that learns to cluster data points according to their feature similarity on a 2D map. We then assign each SOM cluster a label (crisis or non-crisis class) using an agglomerative clustering procedure. We quantify the classification uncertainty by developing a probabilistic function based on the projection learned by SOM. Our method is applied to a synthetic dataset and to real catalogues from the Gulf of Corinth, Central Italy and Taiwan. We discuss the validity of the method by estimating its classification accuracy. For real data, we qualitatively compare our results to previous declustering attempts. We show that our approach is easy to handle, provides a fairly new representation of earthquake catalogues and has the potential to reduce classification ambiguities between nearby events.
More
Translated text
Key words
Real-Time Seismology,Earthquake Prediction Models,Seismic Event Classification,Earthquake Detection,Seismic Phase Picking
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined