WeChat Mini Program
Old Version Features

Development of Machine Learning Based Real-Time Squat Training Feedback System

Sheng-Kwei Tai,Fu-Sung Lin,Yu-Hao Li, Chun-Yuan Chen,Ying-Hsien Chen,Yu-Wen Huang, Chien-Lun Kao, Ju-Hsuan Hung,Pu-Chun Liu,Chih-Hsien Huang

2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII)(2023)

Cited 0|Views5
Abstract
Regular exercise is crucial for maintaining good health, as it promotes muscle growth and helps prevent cardiovascular diseases. Among various forms of exercise, multi-joint exercises are considered the most effective for individuals with limited time availability. However, unsupervised multi-joint exercises may be ineffective and can even lead to injuries. Hence, technological intervention during the workout is required to improve the quality and safety of the training when supervisors are unavailable. Therefore, an automatic recording system for squats with prompt feedback is proposed in this study. Users could analyze their movements using this system and receive suggestions through the screen to improve their form and perform squats correctly even when the coach is not around. To provide feedback immediately, the input features of the machine learning model had to be simple and accurate. Hence, instead of using the entire video, only three critical features were selected in this study to train the machine learning model. The first feature was the angle of the body and thigh (BT), and the second feature was the backward bending of the foot (Dorsiflexion, DF). The third feature was bar-shift (BS), which is the deviation between the barbell and virtual center line (extending from the middle of the ankle and forefoot). In this study, 1826 squats from 54 subjects were successfully recorded and labeled to 11 different conditions. The recorded features were processed to create six datasets. Then, five machine-learning architectures, including Random Forest, XGBoost, 1D-CNN, LSTM, and LSTNet, were trained on different combinations of datasets to find the optimized model. Among them, Random Forest showed the best accuracy in predicting the quality of the squat (72.6%) and recognizing the functional disabilities that led to poor squatting. Finally, a real-time squat training feedback system was demonstrated and examined. Three trainers with an advanced barbell squat technique were asked to perform 10 good squats and 10 questionable squats. The proposed system successfully recorded 54 out of 60 squats, and the accuracy of rating the squat was 55.5%.
More
Translated text
Key words
squat,skeleton,machine learning,prompt feedback,sports science
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined