WeChat Mini Program
Old Version Features

Thermal-Mechanical Analysis of a Power Module with Parametric Model Order Reduction

2023 24th European Microelectronics and Packaging Conference &amp Exhibition (EMPC)(2023)

School of Computing and Mathematical Sciences

Cited 0|Views6
Abstract
This paper presents parametric model order reduction (pMOR) by the Lagrange approach of matrix interpolation for the thermal-mechanical and reliability study of a power electronics module (PEM) with nonlinear behaviours. Most pre-vious research in model order reduction (MOR) studies reports thermal-mechanical simulations using a sequentially coupled method. In this research, a direct-coupled thermal-mechanical analysis, which simultaneously solves the thermal and structural governing equations, has been used to obtain thermal and defor-mation results. Furthermore, for pMOR, the linear approach of matrix interpolation is limited to linear changes between sampled-parametric points. Hence, a new way of interpolating system matrices using the Lagrange interpolation method has been adopted to implement the matrix interpolation efficiently. The parametric reduced-order model (pROM) solution by the Lagrange approach of matrix interpolation agrees well with the full-order model (FOM) and takes similar computational time as the linear (bi-linear) approach of matrix interpolation. pROM simulations offer up to 85.5 % reduction in computational time.
More
Translated text
Key words
Power Electronics
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined