Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning
G. Angloher,S. Banik,G. Benato,A. Bento,A. Bertolini,R. Breier,C. Bucci,J. Burkhart,L. Canonica,A. D’Addabbo,S. Di Lorenzo,L. Einfalt,A. Erb,F. v. Feilitzsch,S. Fichtinger,D. Fuchs,A. Garai,V. M. Ghete,P. Gorla,P. V. Guillaumon,S. Gupta,D. Hauff,M. Ješkovský,J. Jochum,M. Kaznacheeva,A. Kinast,S. Kuckuk,H. Kluck,H. Kraus,A. Langenkämper,M. Mancuso,L. Marini,B. Mauri,L. Meyer,V. Mokina, K. Niedermayer,M. Olmi,T. Ortmann,C. Pagliarone,L. Pattavina,F. Petricca,W. Potzel,P. Povinec,F. Pröbst,F. Pucci,F. Reindl,J. Rothe,K. Schäffner,J. Schieck,S. Schönert,C. Schwertner,M. Stahlberg,L. Stodolsky,C. Strandhagen,R. Strauss,I. Usherov,F. Wagner,V. Wagner,M. Willers,V. Zema, C. Heitzinger,W. Waltenberger Computing and Software for Big Science(2024)
Key words
Dark matter,Cryogenic calorimeter,Transition-edge sensor,Reinforcement learning
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper