Differential influences of forest floor-pyrolyzed biochar-derived and leached dissolved organic matter interaction with natural iron-bearing minerals in forest subsoil on the formation of mineral-associated soil organic matter

Caisheng Li,Hua Wang, Simin Li,Hengkuan Ji,Xuefeng Yu,Dengfeng Wang,Zhengwei Hou, Quanchao Wang,Zhipeng Wu, Xueren Chang, Jinyi Huang,Xilong Wang

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览5
暂无评分
摘要
The vertical sequestration of dissolved organic matter (DOM) by iron minerals along the soil profile is assumed to be central to the long-term storage of the soil organic matter (SOM) pool. However, there is limited information available about how the interaction between DOM and natural iron-bearing minerals shape mineral SOM as-sociations quantitatively and qualitatively in forest subsoils. Here, we systematically investigated the influences of forest organic layer-pyrolyzed biochar-derived DOM (BDOM) and leached DOM (LDOM) on quantity, molecular composition, and diversity of deposition layer-derived iron minerals-associated OM by using Fourier transform ion cyclotron resonance mass spectrometry and other complementary spectroscopy. Results indicated natural iron minerals (FeOx1 and FeOx2) had a greater capacity for sorbing LDOM with higher aromaticity and molecular weight than those of BDOM, and the higher proportion of goethite and short-order-range phase in natural iron minerals was closely related to the increased OM adsorption capacity. We also observed the pref-erential sorption of oxygen/nitrogen-rich polycyclic aromatic compounds and carboxylic-containing compounds in LDOM and concurrent the potential release of lignin-like/aromatics compounds and carboxyl/nitrogen-less aliphatic compounds from native OM coprecipitates into the solution. However, unsaturated and oxidized phenolic compounds in BDOM had a stronger affinity for FeOx through hydrophobic partitioning and specific polar interactions, and concomitantly the partial release of nitrogen-free aliphatic and other carboxyl-rich compounds. More nitrogen structures in aromatic-containing compounds can improve the saturation level and polarity of BDOM. Compared with BDOM, LDOM exerted a stronger control over the exchange of native OM from subsoil natural iron-bearing minerals and substantially enhanced the molecular diversity of the reconstituted mineral-associated OM during the adsorptive fractionation. Overall, these findings suggest the compositional evolution of DOM profoundly shapes SOM formation and persistence in forest subsoils, which is the key to understanding DOM cycling and contaminant fate during its passage through the soil.
更多
查看译文
关键词
Deposition layer-derived natural iron-bearing,minerals,Dissolved organic matter,Adsorptive fractionation,Molecular diversity,Fourier transform ion cyclotron resonance mass,spectrometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要