Polyglucosan body density in the aged mouse hippocampus is controlled by a novel modifier locus on chromosome 1.

A Gómez-Pascual, D M Glikman, H X Ng,J E Tomkins, L Lu, Y Xu,D G Ashbrook,C Kaczorowski, G Kempermann, J Killmar,K Mozhui,R Aebersold,E G Williams,R W Williams,R W Overall,M Jucker, D E M de Bakker

bioRxiv : the preprint server for biology(2023)

引用 0|浏览5
暂无评分
摘要
Aging can be associated with the accumulation of hypobranched glycogen molecules (polyglucosan bodies, PGBs), particularly in astrocytes of the hippocampus. While PGBs have a detrimental effect on cognition in diseases such as adult polyglucosan body disease and Lafora disease, the underlying mechanism and clinical relevance of age-related PGB accumulation remains unknown. Here, we have investigated the genetic basis and functional impact of age-related PGB accumulation in 32 fully sequenced BXD-type strains of mice which exhibit a 400-fold variation in PGB burden in 16-18 month old females. We mapped a major locus controlling PGB density in the hippocampus to chromosome 1 at 72-75 Mb (linkage of 4.9 -logP), which we defined as the Pgb1 locus. To identify potentially causal gene variants within Pgb1, we generated extensive hippocampal transcriptome datasets and identified two strong candidate genes for which mRNA correlates with PGB density-Smarcal1 and Usp37. In addition, both Smarcal1 and Usp37 contain non-synonymous allele variations likely to impact protein function. A phenome-wide association analysis highlighted a trans-regulatory effect of the Pgb1 locus on expression of Hp1bp3, a gene known to play a role in age-related changes in learning and memory. To investigate the potential impact of PGBs on cognition, we performed conditioned fear memory testing on strains displaying varying degrees of PGB burden, and a phenome-wide association scan of ~12,000 traits. Importantly, we did not find any evidence suggesting a negative impact of PGB burden on cognitive capacity. Taken together, we have identified a major modifier locus controlling PGB burden in the hippocampus and shed light on the genetic architecture and clinical relevance of this strikingly heterogeneous hippocampal phenotype.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要