WeChat Mini Program
Old Version Features

群视角下的多智能体强化学习方法综述

Chinese Journal of Intelligent Science and Technology(2023)

中国人民解放军国防科技大学

Cited 0|Views10
Abstract
多智能体系统是分布式人工智能领域的前沿研究概念,传统的多智能体强化学习方法主要聚焦群体行为涌现、多智能体合作与协调、智能体间交流与通信、对手建模与预测等主题,但依然面临环境部分可观、对手策略非平稳、决策空间维度高、信用分配难理解等难题,如何设计满足智能体数量规模比较大、适应多类不同应用场景的多智能体强化学习方法是该领域的前沿课题.首先简述了多智能体强化学习的相关研究进展;其次着重从规模可扩展与种群自适应两个视角对多种类、多范式的多智能体学习方法进行了综合概述归纳,系统梳理了集合置换不变性、注意力机制、图与网络理论、平均场理论共四大类规模可扩展学习方法,迁移学习、课程学习、元学习、元博弈共四大类种群自适应强化学习方法,给出典型应用场景;最后从基准平台开发、双层优化架构、对抗策略学习、人机协同价值对齐和自适应博弈决策环共5个方面进行了前沿研究方向展望,该研究可为多模态环境下多智能强化学习的相关前沿重点问题研究提供参考.
More
Translated text
Key words
distributed intelligence,mean field theory,graph neural network,meta learning,meta game
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined