Comprehensive Wheat Lodging Detection after Initial Lodging Using UAV RGB Images.
EXPERT SYSTEMS WITH APPLICATIONS(2024)
Minist Educ
Abstract
Crop lodging in agricultural fields is one of the major factors that limit cereal crop yields. Wheat, the most popular cereal crop in most countries, is also affected by this phenomenon, which may result in a significant decrease in both yield and quality. Therefore, addressing wheat lodging is crucial for producers. This study aims to detect and identify wheat lodging through aerial images and classify its severity based on ratio, angle and location of the lodging. To achieve this goal, a multi-task approach was proposed involving three phases. First, automatic dataset generation methodology was conducted on orthomosaic imagery of three dates. Next, a comprehensive assessment of wheat lodging (ratio, angle and location) was performed, which has received little research attention. Third, applying and improving selected classification models for classifying image datasets was conducted. Combining convolutional neural networks and temporal sequences in a single model provided an opportunity to use spatiotemporal information extracted from the wheat image datasets. Time dependency and individual dates were both considered in the classification task. The limited number of data and imbalanced classes challenges, resulting from real field conditions data collection, were overcome by applying a new loss function to the classifier models. The overall accuracy of wheat lodging classification reached over 91% in these two states using the proposed approach. Based on this research, wheat lodging was detected more accurately by the proposed models despite the small and imbalanced dataset. The developed methodology paves the way for comprehensive and automatic wheat lodging detection, and the methodology can be adapted for similar crops that suffer lodging issues with suitable modifications.
MoreTranslated text
Key words
Wheat lodging,Aerial imagery,Classification,Time series,Imbalanced data,Deep learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined