WeChat Mini Program
Old Version Features

Detecting Changes in Fish Behaviour in Real Time to Alert Managers to Thresholds of Potential Concern

RIVER RESEARCH AND APPLICATIONS(2024)

Sch Life Sci

Cited 4|Views21
Abstract
Fish behaviour is one biological organisational level regularly used to assess the state of freshwater ecosystems and can be monitored using fish telemetry methods. The development of activity sensors incorporated into fish telemetered tags allows for non-spatial movement to be detected and is increasingly used to understand the energy budgets and response and fine-scale behaviour of fishes. In addition, detecting tagged fish remotely and in real time highlights the need to process fish activity data in near real time to make it relevant to managers in the water resource sector. Our study on Labeobarbus natalensis, a cyprinid, in the uMngeni River in KwaZulu-Natal, South Africa, adapted and then tested the exponentially weighted moving average (EWMA), as developed for financial predictive modelling, using activity data from fish. To determine changes in behaviour, we compared the EWMA-predicted fish behaviour against the present fish behaviour. We showed that the EWMA could adequately detect changes in behaviour on both individual and population levels. Changes in behaviour are potentially indicative of a change in environmental conditions and thus were developed into management alerts. We conducted further analyses using generalised additive mixed models (GAMM) to determine the relationship between fish activity and the environmental data collected. The GAMMs helped determine the potential drivers for changes in behaviour where the EWMA could detect these in real time. Detecting changes in behaviour in real time as a result of environmental variables can identify thresholds of potential concern influencing management decisions and allow managers to respond, contributing to improving effective freshwater management.
More
Translated text
Key words
activity sensors and ecological indicators,cyprinid,exponentially weighted moving average,fish telemetry,management alerts,regulated river,urban environments
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined