Microstructure and phase investigation of FeCrAl-Y2O3 ODS steels with different Ti and V contents

JOURNAL OF NUCLEAR MATERIALS(2023)

引用 0|浏览7
暂无评分
摘要
FeCrAl-based steels are considered promising materials for high-temperature nuclear applications. Over the past years, various compositions have been studied to assess their mechanical properties, structural integrity, and radiation damage resistance. However, the microstructure and phase composition of FeCrAl-ODS steels with the addition of different alloying elements are less commonly studied than pure FeCrAl alloys. The paper presents a novel research path for developing FeCrAl matrix ODS steels with Y2O3, Ti, and V additions. The materials synthesis consisted of mechanical alloying of pure metallic components with yttrium oxide in a planetary ball mill under an argon atmosphere. Titanium was added in the amount of 1.0 wt.% to both samples, while 0.5 wt.% of vanadium was added to one sample to verify its impact on the structural stability and hardness. The spark plasma sintering (SPS) technique was used to consolidate the powders. Afterward, the microstructure, chemical composition, phase composition, and hardness were assessed using SEM-EDS, EBSD, TEM-EDS, XRD, XRF, Nanoindentation, and Vickers microhardness. The experimental data reveal rather homogeneous powders after mechanical alloying and dense bulk samples after SPS. The microstructure observations show oxide particles and carbides on the grain boundaries and inside grains of the bcc matrix, which suggests elevated radiation damage resistance. The presence of nanoscale oxide particles (15-50 nm) in the matrix could significantly reduce the impact of aging embrittlement at high temperatures by affecting the chromium diffusion pathways in the ODS steel matrix. The addition of vanadium leads to an improvement of hardness to 4.83 & PLUSMN;0.43 GPa compared to 3.78 & PLUSMN;0.34 GPa for the sample without vanadium. Presented experimental results are promising in terms of research and development of FeCr and Al-based ODS materials tailored to operate under harsh conditions in generation IV fission reactors and fusion reactors.
更多
查看译文
关键词
ODS steel,Mechanical alloying,Spark plasma sintering,Microstructure,Nanoindentation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要