Invariant Feature Encoding for Contact Handprints Using Delaunay Triangulated Graph
APPLIED SCIENCES-BASEL(2023)
Queensland Univ Technol
Abstract
Contact-based biometric applications primarily use prints from a finger or a palm for a single instance in different applications. For access control, there is an enrollment process using one or more templates which are compared with verification images. In forensics applications, randomly located, partial, and often degraded prints acquired from a crime scene are compared with the images captured from suspects or existing fingerprint databases, like AFIS. In both scenarios, if we need to use handprints which include segments from the finger and palm, what would be the solution? The motivation behind this is the concept of one single algorithm for one hand. Using an algorithm that can incorporate both prints in a common processing framework can be an alternative which will have advantages like scaling to larger existing databases. This work proposes a method that uses minutiae or minutiae-like features, Delaunay triangulation and graph matching with invariant feature representation to overcome the effects of rotation and scaling. Since palm prints have a large surface area with degradation, they tend to have many false minutiae compared to fingerprints, and the existing palm print algorithms fail to tackle this. The proposed algorithm constructs Delaunay triangulated graphs (DTG) using minutiae where Delaunay triangles form from minutiae, and initiate a collection of base triangles for opening the matching process. Several matches may be observed for a single triangle match when two images are compared. Therefore, the set of initially matched triangles may not be a true set of matched triangles. Each matched triangle is then used to extend as a sub-graph, adding more nodes to it until a maximum graph size is reached. When a significant region of the template image is matched with the test image, the highest possible order of this graph will be obtained. To prove the robustness of the algorithm to geometrical variations and working ability with extremely degraded (similar to latent prints) conditions, it is demonstrated with a subset of partial-quality and extremely-low-quality images from the FVC (fingerprint) and the THUPALMLAB (palm print) databases with and without geometrical variations. The algorithm is useful when partial matches between template and test are expected, and alignment or geometrical normalization is not accurately possible in pre-processing. It will also work for cross-comparisons between images that are not known a priori.
MoreTranslated text
Key words
hand biometrics,Delaunay triangulation,invariant feature,fingerprint,palm print,minutiae
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined