WeChat Mini Program
Old Version Features

Time-resolved Spectroscopic and Computational Study of the Initial Events in Doxazosin Photochemistry

Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy(2023)

Rudjer Boskovic Inst

Cited 2|Views23
Abstract
Doxazosin is a quinazoline derivative widely used in medicine as a drug. In this study, a combined experimental and computational approach based on the time-dependent density functional theory was used to elucidate the primary events following the photoexcitation of DOX upon interaction with light. The photophysical properties and photochemical reactivity of DOX were investigated by steady-state and time-resolved absorption and fluorescence spectroscopy. DOX in H2O in S-0 is present in two prototropic forms, with the protonated form dominating (similar to 91 %, pK(a) = 6.75). The computations indicated that the most basic quinazoline nitrogen is at the position 1. Upon excitation, DOX deprotonates in the singlet excited state (pK(a)* = 1.31), and the decay times from the singlet excited state of 5 ns and 13 ns are attributed to the non-protonated and protonated forms of DOX, respectively. The quantum yield of fluorescence in H2O is 0.51 and 0.64 in basic media. The quantum yield of intersystem crossing along with triplet-triplet molar absorption coefficient at 520 nm and the lifetime of the triplet excited state were obtained by LFP, Phi(ISC) = 0.17, epsilon(520) = 11600 +/- 100 M-1 cm(-1) and tau = 11 mu s, respectively. Furthermore, LFP enabled detection of DOX radical formed by the photoinduced intramolecular electron transfer from the benzodioxane-carbamoyl to the protonated aminoquinazoline. Computations were used to back up the assignments of the detected transients and to construct an energy diagram with all plausible photophysical and photochemical pathways. These results elucidated the mechanisms of DOX photochemistry leading to DOX photodegradation which is relevant to environmental studies. They also provided insights into the potential use of such a quinazoline derivative in other applications such as push-pull chromophores or fluorescent probes.
More
Translated text
Key words
Doxazosin (DOX),Photoinduced electron transfer (PET),Laser flash photolysis (LFP),Time-corelated single photon counting (TC-SPC),Time-dependent density functional theory (TD-DFT)
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined