WeChat Mini Program
Old Version Features

The Dynamic Influence of Subsurface Geological Processes on the Assembly and Diversification of Thermophilic Microbial Communities in Continental Hydrothermal Systems

Geochimica et Cosmochimica Acta(2023)

Univ Wyoming

Cited 5|Views31
Abstract
An accepted paradigm of hydrothermal systems is the process of phase separation, or boiling, of a deep, homogeneous hydrothermal fluid as it ascends through the subsurface resulting in gas rich and gas poor fluids. While phase separation helps to explain first-order patterns in the chemistry and biology of a hot spring’s surficial expression, we know little about the subsurface architecture beneath “phase-separated” pools and the timescales over which phase separation processes occur. Essentially, we have a two-dimensional understanding of a four-dimensional process. By combining geophysical, geochemical, isotopic, and microbiological measurements of two adjacent phase-separated hot springs in Norris Geyser Basin, Yellowstone National Park, we provide a four-dimensional assessment of phase separation processes and their biological manifestation. We uniquely show that Yellowstone’s hydrothermal waters originate from a deep sedimentary aquifer and that both meteoric recharge and shallow reactive transport processes are required to establish the geobiological feedbacks that drive bimodal distributions in the geochemical and microbial composition of hot springs. Specifically, over periods of tens of years, gas-enriched fluids containing volcanic sulfide mix with meteoric waters resulting in microbially-mediated production of sulfuric acid by thermoacidophilic Archaea in the near subsurface. In contrast, over periods of hundreds of years, anoxic residual liquid rises to the surface where it is infused with atmospheric gas fostering Archaea and Bacteria that are largely dependent on oxygen. As such, our results provide formative insight into the causative links between subsurface geological processes, the development of geochemical fluids, and the assembly and diversification of thermophilic microbial communities in hydrothermal systems.
More
Translated text
Key words
Hydrothermal Systems,Reactive Transport,Phase Separation,Timescales of Water-Rock Interaction,Thermophilic Microbial Communities,Yellowstone,and Th-Decay Series,Radiogenic Isotopes,Near Surface Geophysics
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined