WeChat Mini Program
Old Version Features

Parallel Disentangling Network for Human–object Interaction Detection

PATTERN RECOGNITION(2024)

Univ Elect Sci & Technol China

Cited 9|Views27
Abstract
Human–object interaction (HOI) detection aims to localize and classify triplets of human, object and interaction from a given image. Earlier two-stage methods suffer both from mutually independent training processes and the interference of redundant negative human–object pairs. Prevailing one-stage transformer-based methods are free from the above problems by tackling HOI in an end-to-end manner. However, one-stage transformer-based methods carry the unnecessary entanglements of the query for different tasks, i.e., human–object detection and interaction classification, and thus bring in poor performance. In this paper, we propose a new transformer-based approach that parallelly disentangles human–object detection and interaction classification in a triplet-wise manner. To make each query focus on one specific task clearly, we exhaustively disentangle HOI by parallelly expanding the naive query in vanilla transformer as triple explicit queries. Then, we introduce a semantic communication layer to preserve the consistent semantic association of each HOI through mixing the feature representations of each query triplet of the correspondence constraint. Extensive experiments demonstrate that our proposed framework outperforms the existing methods and achieves the state-of-the-art performance, with significant reduction in parameters and FLOPs.
More
Translated text
Key words
Human-object interaction detection,Transformer
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined