Real‐time Vehicle Detection Using Segmentation‐based Detection Network and Trajectory Prediction
IET COMPUTER VISION(2024)
Univ Isfahan
Abstract
Abstract The position of vehicles is determined using an algorithm that includes two stages of detection and prediction. The more the number of frames in which the detection network is used, the more accurate the detector is, and the more the prediction network is used, the algorithm is faster. Therefore, the algorithm is very flexible to achieve the required accuracy and speed. YOLO's base detection network is designed to be robust against vehicle scale changes. Also, feature maps are produced in the detector network, which contribute greatly to increasing the accuracy of the detector. In these maps, using differential images and a u‐net‐based module, image segmentation has been done into two classes: vehicle and background. To increase the accuracy of the recursive predictive network, vehicle manoeuvres are classified. For this purpose, the spatial and temporal information of the vehicles are considered simultaneously. This classifier is much more effective than classifiers that consider spatial and temporal information separately. The Highway and UA‐DETRAC datasets demonstrate the performance of the proposed algorithm in urban traffic monitoring systems.
MoreTranslated text
Key words
convolutional neural nets,object detection,recurrent neural nets,vehicles
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined