WeChat Mini Program
Old Version Features

On the Importance of Severely Testing Deep Learning Models of Cognition.

Cognitive Systems Research(2023)

Univ Bristol

Cited 3|Views38
Abstract
Researchers studying the correspondences between Deep Neural Networks (DNNs) and humans often give little consideration to severe testing when drawing conclusions from empirical findings, and this is impeding progress in building better models of minds. We first detail what we mean by severe testing and highlight how this is especially important when working with opaque models with many free parameters that may solve a given task in multiple different ways. Second, we provide multiple examples of researchers making strong claims regarding DNN-human similarities without engaging in severe testing of their hypotheses. Third, we consider why severe testing is undervalued. We provide evidence that part of the fault lies with the review process. There is now a widespread appreciation in many areas of science that a bias for publishing positive results (among other practices) is leading to a credibility crisis, but there seems less awareness of the problem here.
More
Translated text
Key words
Neural networks,Vision,Memory,Perception,Psychology,Severe testing
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined