Using machine learning to predict outcomes following suprainguinal bypass.

Journal of vascular surgery(2023)

引用 0|浏览18
暂无评分
摘要
OBJECTIVE:Suprainguinal bypass for peripheral artery disease (PAD) carries important surgical risks; however, outcome prediction tools remain limited. We developed machine learning (ML) algorithms that predict outcomes following suprainguinal bypass. METHODS:The Vascular Quality Initiative database was used to identify patients who underwent suprainguinal bypass for PAD between 2003 and 2023. We identified 100 potential predictor variables from the index hospitalization (68 preoperative [demographic/clinical], 13 intraoperative [procedural], and 19 postoperative [in-hospital course/complications]). The primary outcomes were major adverse limb events (MALE; composite of untreated loss of patency, thrombectomy/thrombolysis, surgical revision, or major amputation) or death at 1 year following suprainguinal bypass. Our data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, we trained six ML models using preoperative features (Extreme Gradient Boosting [XGBoost], random forest, Naïve Bayes classifier, support vector machine, artificial neural network, and logistic regression). The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). The best performing algorithm was further trained using intra- and postoperative data. Model robustness was evaluated using calibration plots and Brier scores. Performance was assessed on subgroups based on age, sex, race, ethnicity, rurality, median Area Deprivation Index, symptom status, procedure type, prior intervention for PAD, concurrent interventions, and urgency. RESULTS:Overall, 16,832 patients underwent suprainguinal bypass, and 3136 (18.6%) developed 1-year MALE or death. Patients with 1-year MALE or death were older (mean age, 64.9 vs 63.5 years; P < .001) with more comorbidities, had poorer functional status (65.7% vs 80.9% independent at baseline; P < .001), and were more likely to have chronic limb-threatening ischemia (67.4% vs 47.6%; P < .001) than those without an outcome. Despite being at higher cardiovascular risk, they were less likely to receive acetylsalicylic acid or statins preoperatively and at discharge. Our best performing prediction model at the preoperative stage was XGBoost, achieving an AUROC of 0.92 (95% confidence interval [CI], 0.91-0.93). In comparison, logistic regression had an AUROC of 0.67 (95% CI, 0.65-0.69). Our XGBoost model maintained excellent performance at the intra- and postoperative stages, with AUROCs of 0.93 (95% CI, 0.92-0.94) and 0.98 (95% CI, 0.97-0.99), respectively. Calibration plots showed good agreement between predicted and observed event probabilities with Brier scores of 0.12 (preoperative), 0.11 (intraoperative), and 0.10 (postoperative). Of the top 10 predictors, nine were preoperative features including chronic limb-threatening ischemia, previous procedures, comorbidities, and functional status. Model performance remained robust on all subgroup analyses. CONCLUSIONS:We developed ML models that accurately predict outcomes following suprainguinal bypass, performing better than logistic regression. Our algorithms have potential for important utility in guiding perioperative risk mitigation strategies to prevent adverse outcomes following suprainguinal bypass.
更多
查看译文
关键词
outcomes,machine learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要