Ecological metabolomics of tropical tree communities across an elevational gradient: Implications for chemically-mediated biotic interactions and species diversity

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览6
暂无评分
摘要
Seminal hypotheses in ecology and evolution postulate that stronger and more specialized biotic interactions contribute to higher species diversity at lower elevations and latitudes. Plant-chemical defenses mediate biotic interactions between plants and their natural enemies and provide a highly dimensional trait space in which chemically mediated niches may facilitate plant species coexistence. However, the role of chemically mediated biotic interactions in shaping plant communities remains largely untested across large-scale ecological gradients. To test this hypothesis, we used ecological metabolomics to quantify the chemical dissimilarity of foliar metabolomes among 473 tree species (906 unique species-plot combinations) in 16 tropical tree communities along an elevational gradient in Madidi National Park, Bolivia. We predicted that chemical dissimilarity among co-occurring tree species would be greater, and chemical phylogenetic signal lower, in communities with greater tree species richness and warmer, wetter, and less-seasonal climates, as pressure from natural enemies is likely to be greater in these locales. Further, we predicted that these relationships should be especially pronounced for secondary metabolites derived from biosynthetic pathways known to include anti-herbivore and antimicrobial defenses than for primary metabolites. We found that median chemical dissimilarity among tree species with respect to all metabolites and secondary metabolites increased with tree species richness, decreased with elevation, and increased along a principal component of climatic variation that reflected increasing temperature and precipitation and decreasing seasonality. In contrast, median chemical dissimilarity among tree species with respect to primary metabolites was unrelated to tree species richness, elevation, or the principal component of climatic variation. Furthermore, phylogenetic signal of secondary and primary metabolites decreased with tree species richness. Among tree communities in moist forests, phylogenetic signal of secondary metabolites also increased with elevation and decreased with the temperature and precipitation. Our results support the hypothesis that chemically mediated biotic interactions shape elevational diversity gradients by imposing stronger selection for interspecific divergence in plant chemical defenses in warmer, wetter, and more stable climates. Our study also illustrates the promise of ecological metabolomics in the study of biogeography, community ecology, and complex species interactions in high-diversity ecosystems. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
ecological metabolomics,tropical tree communities,biotic interactions,chemically-mediated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要