MAD Max Beyond Single-Node: Enabling Large Machine Learning Model Acceleration on Distributed Systems
2024 ACM/IEEE 51ST ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2024(2024)
Harvard University
Abstract
Training and deploying large machine learning (ML) models is time-consuming and requires significant distributed computing infrastructures. Based on real-world large model training on datacenter-scale infrastructures, we show 14~32% of all GPU hours are spent on communication with no overlapping computation. To minimize the outstanding communication latency, in this work, we develop an agile performance modeling framework to guide parallelization and hardware-software co-design strategies. Using the suite of real-world large ML models on state-of-the-art GPU training hardware, we demonstrate 2.24x and 5.27x throughput improvement potential for pre-training and inference scenarios, respectively.
MoreTranslated text
Key words
Distributed Training,Distributed Inference,Machine Learning,Data Center,GPU,Performance Model,Simulator,Parallelization,Hardware-Software Co-Design
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined