Effects of the BalanCI on Working Memory and Balance in Children and Young Adults with Cochleovestibular Dysfunction.
EAR AND HEARING(2024)
Univ Toronto
Abstract
OBJECTIVES:This study aimed to: (1) determine the interaction between cognitive load and balance in children and young adults with bilateral cochleovestibular dysfunction who use bilateral cochlear implants (CIs) and (2) determine the effect of an auditory balance prosthesis (the BalanCI) on this interaction. Many (20 to 70%) children with sensorineural hearing loss experience some degree of vestibular loss, leading to poorer balance. Poor balance could have effects on cognitive resource allocation which might be alleviated by the BalanCI as it translates head-referenced cues into electrical pulses delivered through the CI. It is hypothesized that children and young adults with cochleovestibular dysfunction will demonstrate greater dual-task costs than typically-developing children during dual balance-cognition tasks, and that BalanCI use will improve performance on these tasks. DESIGN:Study participants were 15 typically-developing children (control group: mean age ± SD = 13.6 ± 2.75 years, 6 females) and 10 children and young adults who use bilateral CIs and have vestibular dysfunction (CI-V group: mean age ± SD=20.6 ± 5.36 years, 7 females). Participants completed two working memory tasks (backward auditory verbal digit span task and backward visuospatial dot matrix task) during three balance conditions: seated, standing in tandem stance with the BalanCI off, and standing in tandem stance with the BalanCI on. Working memory performance was quantified as total number of correct trials achieved. Postural stability was quantified as translational and rotational path length of motion capture markers worn on the head, upper body, pelvis, and feet, normalized by trial time. RESULTS:Relative to the control group, children and young adults in the CI-V group exhibited poorer overall working memory across all balance conditions ( p = 0.03), poorer translational postural stability (larger translational path length) during both verbal and visuospatial working memory tasks ( p < 0.001), and poorer rotational stability (larger rotational path length) during the verbal working memory task ( p = 0.026). The CI-V group also exhibited poorer translational ( p = 0.004) and rotational ( p < 0.001) postural stability during the backward verbal digit span task than backward visuospatial dot matrix task; BalanCI use reduced this stability difference between verbal and visuospatial working memory tasks for translational stability overall ( p > 0.9), as well as for rotational stability during the maximum working memory span (highest load) participants achieved in each task ( p = 0.91). CONCLUSIONS:Balance and working memory were impaired in the CI-V group compared with the control group. The BalanCI offered subtle improvements in stability in the CI-V group during a backward verbal working memory task, without producing a negative effect on working memory outcomes. This study supports the feasibility of the BalanCI as a balance prosthesis for individuals with cochleovestibular impairments.
MoreTranslated text
Key words
Balance,Balance device,Children,Cochlear implants,Dual-task,Sensorineural hearing loss,Vestibular dysfunction,Working memory
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined